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When Is the Wave Function Single-Valued? 
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It is shown that single-valuedness of the wave function can be lost because of an 
external field approximation. The Aharonov-Bohm effect is studied in detail as 
an example of the problem. Specifically, it is shown that the solenoid (repre- 
sented as a rotating, charged cylinder) has a wave function that undergoes a 
phase shift equal in magnitude, but with opposite sign, to the phase shift 
suffered by the electron's wave function when the electron passes the solenoid. 

1. INTRODUCTION 

Single-valuedness of the wave function is one of the basic tenets of 
quantum theory. Yang (1983) has written, "We emphasize that to chal- 
lenge the single valuedness of the wave function is to challenge the very 
foundation of quantum mechanics itself." The present authors are in 
complete agreement with this statement. However, the statement that the 
wave function must always be single-valued must be clearly understood. 
Rules that are used without understanding are generally misused. The goal 
of this paper is to shed some light on single-valuedness, and, above all, to 
point out one misuse of the single-valuedness rule. 

In discussing single-valuedness, it is essential to distinguish between 
free particles and bound states. In bound states, the superposition principle 
by itself guarantees single-valuedness. How it does this has been illustrated 
dearly by A1-Jaber and Henneberger (1992). Again, we stress that in bound 
states, single-valuedness is a consequence of the superposition principle, not 
a separate fundamental requirement. Unfortunately, there have been sev- 
eral papers written using bound states to demonstrate the need for single- 
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valuedness. We shall leave this subject at this point, since all workers agree 
that bound states must be single-valued. 

The question of single-valuedness in the case of free particles now 
arises. Let us examine the case in which interacting particles are infinitely 
far apart at positive infinite and negative infinite times. Let us assume that 
a system consists of two interacting particles which do not interact with 
anything in the rest of the universe. Let the solution of the appropriate 
wave equation be given by W(rl, r2, t). Then, all workers, including the 
present authors, agree that a 360 ~ rotation of the entire system about any 
axis must leave te(rt, r2, t) invariant. (We, of course, omit spinors from the 
discussion.) A 360 ~ rotation of the entire universe is undetectable in any 
reasonable theory. The difficulty here is that the single-valuedness property 
of the wave function can be forfeited in making approximations. Quantum 
theory requires that the exact wave function depend upon the coordinates 
of both particles. However, in practice, when one of the particles is 
extremely massive, or perhaps not a particle at all, but a macroscopic 
object, it is common practice to assume that the small particle can have no 
influence on the large one. The larger (macroscopic) particle is then 
replaced by an external field. It is this external field approximation that 
causes the problem. The most notorious example of this is provided by the 
Aharonov-Bohm (AB) effect. Much has been written about this effect 
since the original paper of Aharonov and Bohm (1959). Nevertheless, 
misconceptions regarding this effect are commonplace even today. 

In the following sections, it will be shown that in the AB effect the 
solenoid (which will be represented by a charged, rotating cylinder) also 
undergoes a phase shift. Moreover, this phase shift does not go to zero as 
the moment of inertia of the cylinder goes to infinity. The phase shift of the 
cylinder is of no consequence if one wishes information only about the 
cylinder. However, this phase shift is of vital importance in the discussion 
of the single-valuedness of W(r, 0, t), where 0 represents the angle that 
locates some fiducial mark on the cylinder. In the usual external field 

approximation, it is assumed that the passage of the electron can have no 
influence on the rotating cylinder. One thus writes 

W(r, 0, t) = O(0, t)~k(r, t) (1) 

and assumes that O(0, t) can be ignored and that ~k(r, t) then is the "wave 
function" for the electron in the external field. One then applies the 
single-valuedness rule to ~k(r, t). In the remainder of this work, it will be 
shown that equation (1) is incorrect, since | must depend upon r as well 
as 0 and t. It will also be shown that ~k(r, t) cannot, in general, be 
sing!e-valued. 
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2. CLASSICAL EQUATION FOR AN ELECTRON IN AN 
EXTERNAL FIELD 

From a classical point of view, the external field approximation is a 
good one. It may therefore be helpful to the reader to review the work of 
Zhu and Henneberger (1990) at this point. 

The interaction energy of a time-independent external current with a 
passing electron is given by 

AE = ~ Be~ (r '  - r)" B~xt(r') d3r ' (2) 

with 

1 
B ~  = - v X E ( r '  - r )  ( 3 )  

r 

where v is the velocity of an electron at the point r. The reader will note 
that the electrostatic energy 

AEel = ~ Er -- r)" Eext(r' ) d3r ' (4) 

vanishes if the point r is a point at which the electrostatic potential 
vanishes. This is the case in the example to be considered. We consider the 
quantity 

1 V ~Bel(r' - r )-  Bext(r' ) d3r ' 
4n 3 

1 x E ( r ' - r )  �9 = 47r---c B~xt(r ) d3r ' 

_ _ 1 V f v "  E(r' - r) x Bext(r' ) d3r ' 
4xc J 

---- V(v"  efield) 

= (V" V)Pfielcl + V • (V X P~old) 

= dPfiela 
+ V X (V X Pfield) 

d t  
(5) 

Equation (5) makes use of the expression for the electromagnetic 
momentum, which depends upon the electric field of the electron and the 
magnetic field of the solenoid. The second term on the right-hand side of 



1786 Henneberger and Opatrn# 

equation (5) is just (e/c)v x B~xt. The proof  is as follows: 

I V x ~ E ( r '  - r) x Bcxt(r') d3r ' 
47rc J 

1 ~_Bext(r,)[V E(r'  r)]d3r ' 
47rc ( 

+ I [B~t(r ')  �9 V]E(r' - r) d3r'} (6) 

The relation V" E(r '  - r) = - V ' -  E(r '  - r) yields 

VXP~etd=4~c{fB(r'i'47refi(r'-r)d3r' 
(7) 

+ f [B( r ' )  "V]E(r" - r) d3r ' } 

The first term of  equation (7) is (e/c)B(r). The second term can be shown 
to vanish. Let ~ be an arbitrary constant vector. Then the relation 

f [B( r ' )  �9 W]E(r'  - r) dSr ' 

= ~[B(r ' )  �9 V'l[e �9 E(r '  - r)] d3r" 

= f V "  [~" E(r" - r)]B(r') d3r" 

- .f~" E(r '  - r) V "  B(r') d3r ' (8) 

holds. The first integral can be converted into a surface integral that 
vanishes as the surface goes to infinity. The second integral vanishes since 
V'" B(r') = 0. Thus, we have the result 

__1 V fB(r'-r)'B~,,t(r)d3r'=~d~2-~+e" v x B~xt (9) 
41t c 

The reader will observe that equation (9) assumes that the external field 
Bext is absolutely constant in time and not  influenced by the moving 
electron. This assumption is the one made in almost all treatments of the 
AB effect. This condition can be fulfilled easily to arbitrary accuracy by 
ensuring that the solenoid has a sufficiently large (mechanical or electro- 
magnetic) moment  of inertia. 

Equations (6 ) - (9 )  yield the result 

V x Pfiela = (e/c)(V x A) (10) 
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This indicates that, in some gauge, 

Pnela(r) = (e/c)A(r) (11) 

It should not be surprising to learn that the gauge in question is the 
Coulomb gauge, i.e., the gauge satisfying V" A = 0. This result was already 
obtained by Boyer (1973). The significance of Boyer's result seems never to 
have been fully appreciated. The physical (observable) quantity responsible 
for the AB effect is the electromagnetic momentum. Gauge invariance of 
the theory causes any effect of the electromagnetic momentum to appear to 
be an effect of the vector potential. Modulo a gauge transformation, one 
might consider (e/c)A(r)  to represent the electromagnetic momentum in an 
arbitrary gauge. 

The following is a proof of equation (11) due to Zhu and Henneberger 
(1990): 

Ptield(r) ---- ~ C  E(r' - r) • [V' • A(r') d3r ' 

1 ~V'[E(r '  - r) A(r ' ) ]  d3r ' 
4~c J 

4rcc [A(r') �9 V']E(r' - r) d3r ' 

, f  4~C [E(r' - r) �9 V'IA(r') d3r" 

1 fA( r ' )  x [V' x E(r' - r)] d3r ' (12) 
47zc 3 

The fourth term of equation (12) vanishes, since V' • E(r' - r )  = 0 for the 
Coulomb field of the electron. The first integral vanishes by a corollary of 
Gauss' theorem. The second integral vanishes in Coulomb gauge: Let ~ be 
an arbitrary constant vector. We then have the equality 

5" .f[A(r') �9 V']E(r' - r) d3r ' 

= . I V "  [A(r')~ �9 E(r' - r)] d3r ' 

f - - [ ~ ' E ( r ' - r ) ]  V " A ( r ' ) d 3 r  ' (13) 

The first integral can be converted into a vanishing surface integral. The 
second term vanishes because of V' �9 A(r') = 0. 
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The third integral of equation (12) can be written 

(1/41rc) ~A(r ')  V"  E ( r ' - r )  dar ' 
i l l  

= (I/c) .~A(r')e ~(r' - r) d3r  ' = (e/c)A(r) (14) 

Therefore, in a realistic problem involving sources of finite extent in space, 
the electromagnetic momentum is given by (e/c)A(r), where A(r) is the 
(unique) vector potential in Coulomb gauge. 

3. T H E  FREE-PARTICLE AHARONOV-BOHM EFFECT 

The essential feature of the Aharonov-Bohm effect is that the wave 
function of an electron confined to a region external to a whisker of flux 
undergoes a phase shift even though no force acts upon it. The sign of the 
phase shift depends upon the sign of the kinetic angular momentum. This 
path-dependent phase shift results in a shift in electron diffraction patterns 
when a flux whisker is introduced into the diffracting system. Definitive 
experimental work has been done by Chambers (1960), Boersch et al. 
(1962), M611enstedt and Bayh (1962), and more recently by Tonomura and 
co-workers (1986). This shift in a diffraction pattern is often called 
"Aharonov-Bohm scattering." Equation (9) indicates that the electromag- 
netic momentum is the quantity being scattered. 

Aharonov and Bohm (1959) computed a scattering cross section for 
electrons on a vanishingly small-diameter flux whisker. The "scattering" 
has the distressing property that a vanishing force (i.e., a force having zero 
range) gives rise to an infinite total scattering cross section. 

The usual treatment of the problem consists in going immediately to 
the external field approximation. This is usually done under the assumption 
that the result obtained is still exact, at least for all practical purposes. 
There exist two sets of angular momentum eigenfunctions that may be 
considered serious candidates for the designation "stationary states of the 
system." For motion confined to the x, y plane, these are: 

1. Jm(kr) e imp" e-i~, 
2. Jtm+~l(kr) eim* 

In the above, m is an integer and at = -(e~/ch), where �9 is the flux in a 
whisker along the z axis. 

It was shown by Dirac (1931) that in a region free of magnetic fields 
the solution of the Schr6dinger equation may be written 

. A(r')  ~k(r, t ) =  •~ t )exp[i(e/hc)fr  . d r ' ]  (15) 
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where ~,~ 0 satisfies the Sehr6dinger equation with the same scalar 
potential, but in which the vector potential has been set equal to zero. The 
vector potential for a flux whisker is 

A(r) = $~/(2~p) (16) 

Thus, 

I" I ~ #~P' A(r') �9 dr' = ~ aq~' 

= 2n + const (17) 

and the phase factor of equation (15), which is called the Dirac phase 
factor, is (apart from a constant phase) just the factor e -i"* of the 
solutions of type 1. Hereafter, we refer to any single-valued function 
multiplied by the Dirac phase factor as a Dirac wave function. 

The functions of type 2 were first obtained by Aharonov and Bohm 
(1959). These functions follow as a consequence of a routine application of 
the single-valuedness rule. These functions, as well as their superpositions, 
will be called AB wave functions. 

4. THE COMPLETE AB PROBLEM 

A discussion of the AB effect when the flux whisker is an actual 
solenoid is extremely complicated. The reader is referred to Sections 5 and 
6 of the work of Zhu and Henneberger (1990). In order to avoid a 
discussion of the quantum theory of the power source that supplies the 
current to the solenoid, we adopt a model similar to the one discussed in 
Section 5 of Peshkin et  al. (1961). 

We consider a cylinder of radius a and length l carrying a surface 
charge density a. The axis of the cylinder carries a line charge 2 = -2na~,  
so that the electric field of the cylinder is confined to its interior. Thus, the 
electrostatic potential vanishes in the region exterior to the cylinder. The 
cylinder is free to rotate about its axis (the z axis). 

An exact treatment of the AB problem in which an electron passes the 
cylinder with fixed angular momentum consists of an infinite series of 
rapidly converging corrections to the unperturbed motion. The passing 
electron affects the motion of the cylinder, the change in the cylinder's 
motion gives a further correction to the usual AB effect, etc. 

The method that we use here is an approximation, albeit an extremely 
good one. We approximate the state function for the electron-cylinder 
system by a product of the form 

�9 (r, 0, 0 = e(o,  r, 0~b(r, 0 (18) 
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The reader will note that this differs from equation (1) only in the fact 
that | r, t) now depends on r, in order to allow for the influence of the 
electron on the cylinder. We reiterate: It is W(r, 0, t) which describes an 
isolated system. It is this function which must be single-valued. The 
product ansatz of equation (18) is based on the fact that the influence of 
the passing electron on the cylinder (and vice versa!) is very slight. 

We obtain an approximate solution as follows: 
1. We assume that O(r, t) is a solution of the usual AB problem using 

a constant flux. 

2. We assume that | r, t) is the solution of the quantum problem 
for the cylinder interacting with a passing classical electron, This may 
appear strange, but in light of the fact that the electron experiences no 
force, the approximation should be excellent. 

We consider that a classical electron passes the cylinder with constant 
speed along a line parallel to the x axis with impact parameter b, as shown 
in Fig. 1. 

• 

Fig. 1. 
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At this point, we again remind the reader that the form of @(r, t), i.e., 
whether ~(r, t) is a Dirac wave function or a single-valued wave function, 
depends upon our result for | r, t). 

Equations (9) and (11) together yield 

1 V f B ~ i ( r ' - r )  , 3 ,  e d A ( r )  - -  �9 Bcyl(r ) d r - (19) 4n ,J c dt 

Equation (19) holds only in Coulomb gauge; the Lorentz force term, which 
vanishes in the AB problem, has been dropped. Bcyl(r') is in the z direction. 
The magnitude of the magnetic field is related to the current/length K by 
the relation Bey 1 = 4nK/c, with K = (Jaal Here, 0 is the angular velocity of 
the cylinder, so that 

n c y  I = (4n/c)(Jae (20) 

Equation (19), together with the fact that the electron has only one degree 
of freedom, yields 

~ fVol ~ Bz(r' - r) 

Iv Oaa ~o~(z,, x) dz" 
(~X oi C 

_ e a A ~ ( r )  

c dt 

e 3A~ 
- v ( 2 1 )  

c ~x 

In equation (21), Vol denotes the volume of the cylinder, and v is the 
velocity of the electron, x and t are related by x = yr. The constancy of v 
assumes the neglect of electric fields caused by the angular acceleration of 
the cylinder. In this approximation (which is excellent to a massive cylinder 
with a large angular momentum), one may integrate equation (21) directly, 
obtaining 

(e/c)vAx = ((Jaa/c) ~ ~el(z', x) dz' (22) 
dv ol 

The cylinder has length l and (mechanical) moment of inertia Io. The 
electromagnetic angular momentum of the cylinder is 

- r x (E x B) d3r (23) 
Lem - -  4no' ol 
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with r = ix + iv. The Lem is parallel to Lmech. We have 

Lcm = ( l /4rrc) . I  a r( 4rraa /r)( 4rr / c)Oatr . 2nr dr 

= 4l~2a4a2l~/c 2 (24) 

SO that I = Io + 4~z2a4tr2l/c 2 is the effective moment of  inertia of  a charged 
cylinder of  length l. 

The interaction Lagrangian is given by (e/c)v" A, so that the Lagran- 
gian for the cylinder is 

1 _be 
s = 2 I02 c vA~ (25) 

Here, 0 is the angle subtended by some fiducial mark on the cylinder with 
the perpendicular to the trajectory indicated by the vector b in Fig. 1. The 
vector potential is A = $~/(2~r) ,  where �9 is the flux due to the rotating 
cylinder [not to be confused with ~r of  equation (22)]. The unit vector q~ 
is in the r direction in Fig. 1. 

The flux is given by 

r = rraZB = (4rc2a3a/c)O (26) 

and 

yield 

A4, = 
2~a3a b 

cos r = (27a) c(b2 + x 2) 1/2' (b 2 + x 2) 1/2 

2~a3abO 
Ax = A 4, cos q~ = c(b2 + x2 ) (27b) 

1 2nea3trbvO (28) 
.~  = -~ I0 2 + c2(b 2 + x 2) 

The canonical angular momentum is 

eo = O~/aO = SO + R(x) 
(29) 

2~ea3abv 
R(x)  = c2(b 2 + x2 ) 

with x = vt. The relation d f f /d0  = 0 indicates that Po is conserved. The 
wave function O(0, r, t) of  equation (18) is of  the form 

{'If_ ; ]} O(0, r, t) = exp ~ Po dO' - E( t ' )  dt" (30) 
oO oO 
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The interaction between the electron and the cylinder is very weak. We 
may therefore consider that the total energy of the system comprises that of 
the electron plus that of the cylinder. The energy of the electron (kinetic 
energy = �89 2) is conserved. Energy conservation therefore dictates that the 
energy of the cylinder (mechanical plus magnetic) is conserved. This is 
easily checked. We define the quantity to: 

Po =- Io~ = IOl, = - ~ o  ( 3 1 )  

Then equation (29) yields 0 = o) -R(x) / I ,  so that 

AO = - R ( x ) / I  (32) 

represents the change in O due to the passage of the electron. The change 
in kinetic energy is then 

AKE = I0 AO ~ Io~ AO = 

The change in magnetic energy is 

2zea 3r 
c2(b 2 q- X 2) (33) 

1 fBel(r , _ r ) .  4---~ Bcyl(r ) d3r ' 

toaa f d# ( ' ) dz' --~ el  Z , X 
r J 

e 
= - vA x 

c 

e 2rra3abv 
c2 b2 + x2 09 

= - A K E  (34) 

It is now clear that any phase shift of the cylinder must be due to a lag 
in the angle O(t). Indeed, the phase shift in equation (30) is given by 

Po AO = T AO dt' 
oo 

09 f ~  2nea3ab 
= - -h-  oo c2( b2 q- x '2) d x "  

e l f  = - - -  A x  d x '  ( 3 5 )  
hc ~ 

Thus, the phase shift of | r, t) is just the negative of the Dirac phase 
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shift that a quantum electron experiences in the vector potential of a 
classical flux. 

We now return to the requirement that the total wave function 
~P(r, 0, t) = | r, t)@(r, t) must be single-valued. The phase factor occur- 
ring in 0(0, r, t) requires that r t) contain the Dirac phase factor 
discussed earlier. The use of single-valued functions for ~#(r, t) violates the 
single-valuedness condition for the overall wave function ~P(r, 0, t). 

5. DISCUSSION 

We have seen how the external field approximation can destroy the 
single-valuedness requirement of wave functions of particles interacting 
with such fields. An object may have macroscopic dimensions and still 
carry a phase factor in its wave function that profoundly affects the 
boundary conditions for a quantum particle with which it interacts. One 
may not, in general, blindly apply a single-valuedness condition to external 
field problems unless one is dealing with bound states. Workers dealing 
with external field problems who wish to avoid the quantum theory of the 
external source may find the use of boundary conditions involving the 
probability current density, as discussed elsewhere (Henneberger, 1984), 
helpful. 

Finally, we note that the appropriate stationary states in the AB 
"scattering" problem are the Dirac states, not the AB states. This is a point 
that one of the authors has stressed for over a decade (Henneberger, 1981, 
1984; Shapiro and Henneberger, 1989). 
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